Characteristics of fast mediated bioelectrocatalytic reaction near microelectrodes.

نویسندگان

  • Yuki Kitazumi
  • Tatsuo Noda
  • Osamu Shirai
  • Masahiro Yamamoto
  • Kenji Kano
چکیده

The pseudo-steady-state current due to a mediated enzymatic reaction on a microelectrode is characterized on the basis of theoretical analysis and numerical simulation. The steady-state current is proportional to substrate concentration when the enzymatic reaction is considerably faster than substrate mass transport via nonlinear diffusion. Under such conditions, the reaction plane, where the mass flow of the substrate is converted to that of the mediator, exists near the electrode surface. The steady-state current increases as the diffusion coefficient of the substrate increases. In contrast, the diffusion coefficient and the concentration of the mediator have minor effects on the current. This difference can be explained on the basis of a change in the reaction plane location. When a sufficient amount of enzyme exists in a system, the system can be used as an amperometric biosensor, the response of which is independent of any change in enzyme activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion-controlled detection of glucose with microelectrodes in mediated bioelectrocatalytic oxidation.

This paper describes a diffusion-controlled electrolysis of glucose with mediated bioelectrocatalysis at microdisk-electrodes. Under conditions of an extremely fast enzyme reaction, compared with the diffusion of glucose, the current in potential-step chronoamperometry reaches an almost steady state within 10 s, and is proportional to the glucose concentration. The current can be detected at +0...

متن کامل

Diffusion-controlled Mediated Electron Transfer-type Bioelectrocatalysis Using Microband Electrodes as Ultimate Amperometric Glucose Sensors.

We performed numerical simulations on an extremely fast, mediated, electron transfer-type bioelectrocatalytic reaction using a microband electrode. The simulations under fast-enzyme-kinetics conditions predicted that the decrement of the current density by increaseing the microband thickness would effectively improve the upper limit of detection. These predictions were accurate for an ultrathin...

متن کامل

Heterogeneous Copper Nanoparticle on Charcoal (Cu/C) Mediated Efficient Synthesis of 1-Substituted 1H-Tetrazoles under Solvent Free Condition

1-substituted 1H-tetrazoles were efficiently synthesized under solvent-free conditions from the reaction of primary amines, triethylorthoformate, and sodium azide in the presence of Cu/C as a heterogeneous catalyst. Various amines including aromatic and heteroaromatic amines were used to afford the corresponding products in good to excellent yields. The characterization of corresponding product...

متن کامل

New Nanobiocomposite Materials for Bioelectronic Devices

We have developed and synthesized nanobiocomposite materials based on graphene, poly(3,4-ethylenedioxythiophene), and glucose oxidase immobilized on the surface of various nanomaterials (gold nanoparticles and multi-walled carbon nanotubes) of different sizes (carbon nanotubes of different diameters). Comparative studies of the possible influence of the nanomaterial's nature on the bioelectroca...

متن کامل

Plant-mediated synthesis of Silver nanoparticles by two species of Cynanchum L. (Apocynaceae): A comparative approach on its physical characteristics

The present study evaluates the biosynthesis of silver nanoparticles (SNPs) mediated by xerophytic plants, Cynanchum viminale and Cynanchum sarcomedium. The reaction between plant extracts and silver nitrate solution resulted in a yellowish brown/dark brown colored solution which suggests the formation of SNPs. Physical characteristics of synthesized SNPs were determined using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 19  شماره 

صفحات  -

تاریخ انتشار 2014